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A P value is the probability of an observed (or more extreme) result
arising only from chance.
S. Goodman, adapted by A. Nandy
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P VALUE

Odds Are, It's Wrong

Science fails to face the shortcomings of statistics

For better or for worse, science has long been married to
mathematics. Generally it has been for the better. Especially since the
days of Galileo and Newton, math has nurtured science. Rigorous
mathematical methods have secured science’s fidelity to fact and
conferred a timeless reliability to its findings.

During the past century, though, a mutant form of math has deflected
science’s heart from the modes of calculation that had long served so
faithfully. Science was seduced by statistics, the math rooted in the
same principles that guarantee profits for Las Vegas casinos.
Supposedly, the proper use of statistics makes relying on scientific
results a safe bet. But in practice, widespread misuse of statistical
methods makes science more like a crapshoot.

It’s science’s dirtiest secret: The “scientific method” of testing
hypotheses by statistical analysis stands on a flimsy foundation.
Statistical tests are supposed to guide scientists in judging whether an
experimental result reflects some real effect or is merely a random
fluke, but the standard methods mix mutually inconsistent
philosophies and offer no meaningful basis for making such decisions.
Even when performed correctly, statistical tests are widely
misunderstood and frequently misinterpreted. As a result, countless
conclusions in the scientific literature are erroneous, and tests of
medical dangers or treatments are often contradictory and confusing.

Replicating a result helps establish its validity more securely, but the
common tactic of combining numerous studies into one analysis, while
sound in principle, is seldom conducted properly in practice.



Experts in the math of probability and statistics are well aware of
these problems and have for decades expressed concern about them
in major journals. Over the years, hundreds of published papers have
warned that science’s love affair with statistics has spawned countless
illegitimate findings. In fact, if you believe what you read in the
scientific literature, you shouldn’t believe what you read in the
scientific literature.

“There is increasing concern,” declared epidemiologist John Ioannidis
in a highly cited 2005 paper in PLoS Medicine, “that in modern
research, false findings may be the majority or even the vast majority
of published research claims.”

Ioannidis claimed to prove that more than half of published findings
are false, but his analysis came under fire for statistical shortcomings
of its own. “It may be true, but he didn’t prove it,” says biostatistician
Steven Goodman of the Johns Hopkins University School of Public
Health. On the other hand, says Goodman, the basic message stands.
“There are more false claims made in the medical literature than
anybody appreciates,” he says. “There’s no question about that.”

Nobody contends that all of science is wrong, or that it hasn’t
compiled an impressive array of truths about the natural world. Still,
any single scientific study alone is quite likely to be incorrect, thanks
largely to the fact that the standard statistical system for drawing
conclusions is, in essence, illogical. “A lot of scientists don’t
understand statistics,” says Goodman. “And they don’t understand
statistics because the statistics don’t make sense.”

Statistical insignificance

Nowhere are the problems with statistics more blatant than in studies
of genetic influences on disease. In 2007, for instance, researchers
combing the medical literature found numerous studies linking a total
of 85 genetic variants in 70 different genes to acute coronary
syndrome, a cluster of heart problems. When the researchers
compared genetic tests of 811 patients that had the syndrome with a
group of 650 (matched for sex and age) that didn’t, only one of the
suspect gene variants turned up substantially more often in those
with the syndrome — a number to be expected by chance.

“Our null results provide no support for the hypothesis that any of the
85 genetic variants tested is a susceptibility factor” for the syndrome,
the researchers reported in the Journal of the American Medical
Association.

How could so many studies be wrong? Because their conclusions
relied on “statistical significance,” a concept at the heart of the
mathematical analysis of modern scientific experiments.

Statistical significance is a phrase that every science graduate student



learns, but few comprehend. While its origins stretch back at least to
the 19th century, the modern notion was pioneered by the
mathematician Ronald A. Fisher in the 1920s. His original interest was
agriculture. He sought a test of whether variation in crop yields was
due to some specific intervention (say, fertilizer) or merely reflected
random factors beyond experimental control.

Fisher first assumed that fertilizer caused no difference — the “no
effect” or “null” hypothesis. He then calculated a number called the P
value, the probability that an observed yield in a fertilized field would
occur if fertilizer had no real effect. If P is less than .05 — meaning
the chance of a fluke is less than 5 percent — the result should be
declared “statistically significant,” Fisher arbitrarily declared, and the
no effect hypothesis should be rejected, supposedly confirming that
fertilizer works.

Fisher’s P value eventually became the ultimate arbiter of credibility
for science results of all sorts — whether testing the health effects of
pollutants, the curative powers of new drugs or the effect of genes on
behavior. In various forms, testing for statistical significance pervades
most of scientific and medical research to this day.

But in fact, there’s no logical basis for using a P value from a single
study to draw any conclusion. If the chance of a fluke is less than 5
percent, two possible conclusions remain: There is a real effect, or the
result is an improbable fluke. Fisher’s method offers no way to know
which is which. On the other hand, if a study finds no statistically
significant effect, that doesn’t prove anything, either. Perhaps the
effect doesn’t exist, or maybe the statistical test wasn’t powerful
enough to detect a small but real effect.

“That test itself is neither necessary nor sufficient for proving a
scientific result,” asserts Stephen Ziliak, an economic historian at
Roosevelt University in Chicago.

Soon after Fisher established his system of statistical significance, it
was attacked by other mathematicians, notably Egon Pearson and
Jerzy Neyman. Rather than testing a null hypothesis, they argued, it
made more sense to test competing hypotheses against one another.
That approach also produces a P value, which is used to gauge the
likelihood of a “false positive” — concluding an effect is real when it
actually isn’t. What  eventually emerged was a hybrid mix of the
mutually inconsistent Fisher and Neyman-Pearson approaches, which
has rendered interpretations of standard statistics muddled at best
and simply erroneous at worst. As a result, most scientists are
confused about the meaning of a P value or how to interpret it. “It’s
almost never, ever, ever stated correctly, what it means,” says
Goodman.

Correctly phrased, experimental data yielding a P value of .05 means
that there is only a 5 percent chance of obtaining the observed (or
more extreme) result if no real effect exists (that is, if the



no-difference hypothesis is correct). But many explanations mangle
the subtleties in that definition. A recent popular book on issues
involving science, for example, states a commonly held misperception
about the meaning of statistical significance at the .05 level: “This
means that it is 95 percent certain that the observed difference
between groups, or sets of samples, is real and could not have arisen
by chance.”

That interpretation commits an egregious logical error (technical
term: “transposed conditional”): confusing the odds of getting a result
(if a hypothesis is true) with the odds favoring the hypothesis if you
observe that result. A well-fed dog may seldom bark, but observing
the rare bark does not imply that the dog is hungry. A dog may bark 5
percent of the time even if it is well-fed all of the time. (See Box 2)

Another common error equates statistical significance to “significance”
in the ordinary use of the word. Because of the way statistical
formulas work, a study with a very large sample can detect “statistical
significance” for a small effect that is meaningless in practical terms.
A new drug may be statistically better than an old drug, but for every
thousand people you treat you might get just one or two additional
cures — not clinically significant. Similarly, when studies claim that a
chemical causes a “significantly increased risk of cancer,” they often
mean that it is just statistically significant, possibly posing only a tiny
absolute increase in risk.

Statisticians perpetually caution against mistaking statistical
significance for practical importance, but scientific papers commit that
error often. Ziliak studied journals from various fields — psychology,
medicine and economics among others — and reported frequent
disregard for the distinction.

“I found that eight or nine of every 10 articles published in the leading
journals make the fatal substitution” of equating statistical
significance to importance, he said in an interview. Ziliak’s data are
documented in the 2008 book The Cult of Statistical Significance,
coauthored with Deirdre McCloskey of the University of Illinois at
Chicago.

Multiplicity of mistakes

Even when “significance” is properly defined and P values are carefully
calculated, statistical inference is plagued by many other problems.
Chief among them is the “multiplicity” issue — the testing of many
hypotheses simultaneously. When several drugs are tested at once, or
a single drug is tested on several groups, chances of getting a
statistically significant but false result rise rapidly. Experiments on
altered gene activity in diseases may test 20,000 genes at once, for
instance. Using a P value of .05, such studies could find 1,000 genes
that appear to differ even if none are actually involved in the disease.
Setting a higher threshold of statistical significance will eliminate
some of those flukes, but only at the cost of eliminating truly changed



genes from the list. In metabolic diseases such as diabetes, for
example, many genes truly differ in activity, but the changes are so
small that statistical tests will dismiss most as mere fluctuations. Of
hundreds of genes that misbehave, standard stats might identify only
one or two. Altering the threshold to nab 80 percent of the true
culprits might produce a list of 13,000 genes — of which over 12,000
are actually innocent.

Recognizing these problems, some researchers now calculate a “false
discovery rate” to warn of flukes disguised as real effects. And
genetics researchers have begun using “genome-wide association
studies” that attempt to ameliorate the multiplicity issue (SN:
6/21/08, p. 20).

Many researchers now also commonly report results with confidence
intervals, similar to the margins of error reported in opinion polls.
Such intervals, usually given as a range that should include the actual
value with 95 percent confidence, do convey a better sense of how
precise a finding is. But the 95 percent confidence calculation is based
on the same math as the .05 P value and so still shares some of its
problems.

Clinical trials and errors

Statistical problems also afflict the “gold standard” for medical
research, the randomized, controlled clinical trials that test drugs for
their ability to cure or their power to harm. Such trials assign patients
at random to receive either the substance being tested or a placebo,
typically a sugar pill; random selection supposedly guarantees that
patients’ personal characteristics won’t bias the choice of who gets the
actual treatment. But in practice, selection biases may still occur,
Vance Berger and Sherri Weinstein noted in 2004 in ControlledClinical
Trials. “Some of the benefits ascribed to randomization, for example
that it eliminates all selection bias, can better be described as fantasy
than reality,” they wrote.

Randomization also should ensure that unknown differences among
individuals are mixed in roughly the same proportions in the groups
being tested. But statistics do not guarantee an equal distribution any
more than they prohibit 10 heads in a row when flipping a penny.
With thousands of clinical trials in progress, some will not be well
randomized. And DNA differs at more than a million spots in the
human genetic catalog, so even in a single trial differences may not
be evenly mixed. In a sufficiently large trial, unrandomized factors
may balance out, if some have positive effects and some are negative.
(See Box 3) Still, trial results are reported as averages that may
obscure individual differences, masking beneficial or harmful effects
and possibly leading to approval of drugs that are deadly for some
and denial of effective treatment to others.

“Determining the best treatment for a particular patient is
fundamentally different from determining which treatment is best on



average,” physicians David Kent and Rodney Hayward wrote in
American Scientist in 2007. “Reporting a single number gives the
misleading impression that the treatment-effect is a property of the
drug rather than of the interaction between the drug and the complex
risk-benefit profile of a particular group of patients.”

Another concern is the common strategy of combining results from
many trials into a single “meta-analysis,” a study of studies. In a
single trial with relatively few participants, statistical tests may not
detect small but real and possibly important effects. In principle,
combining smaller studies to create a larger sample would allow the
tests to detect such small effects. But statistical techniques for doing
so are valid only if certain criteria are met. For one thing, all the
studies conducted on the drug must be included — published and
unpublished. And all the studies should have been performed in a
similar way, using the same protocols, definitions, types of patients
and doses. When combining studies with differences, it is necessary
first to show that those differences would not affect the analysis,
Goodman notes, but that seldom happens. “That’s not a formal part of
most meta-analyses,” he says.

Meta-analyses have produced many controversial conclusions.
Common claims that antidepressants work no better than placebos,
for example, are based on meta-analyses that do not conform to the
criteria that would confer validity. Similar problems afflicted a 2007
meta-analysis, published in the New England Journal of Medicine, that
attributed increased heart attack risk to the diabetes drug Avandia.
Raw data from the combined trials showed that only 55 people in
10,000 had heart attacks when using Avandia, compared with 59
people per 10,000 in comparison groups. But after a series of
statistical manipulations, Avandia appeared to confer an increased
risk.

In principle, a proper statistical analysis can suggest an actual risk
even though the raw numbers show a benefit. But in this case the
criteria justifying such statistical manipulations were not met. In some
of the trials, Avandia was given along with other drugs. Sometimes
the non-Avandia group got placebo pills, while in other trials that
group received another drug. And there were no common definitions.

“Across the trials, there was no standard method for identifying or
validating outcomes; events ... may have been missed or
misclassified,” Bruce Psaty and Curt Furberg wrote in an editorial
accompanying the New England Journal report. “A few events either
way might have changed the findings.”

More recently, epidemiologist Charles Hennekens and biostatistician
David DeMets have pointed out that combining small studies in a
meta-analysis is not a good substitute for a single trial sufficiently
large to test a given question. “Meta-analyses can reduce the role of
chance in the interpretation but may introduce bias and confounding,”
Hennekens and DeMets write in the Dec. 2 Journal of the American



Medical Association. “Such results should be considered more as
hypothesis formulating than as hypothesis testing.”

These concerns do not make clinical trials worthless, nor do they
render science impotent. Some studies show dramatic effects that
don’t require sophisticated statistics to interpret. If the P value is
0.0001 — a hundredth of a percent chance of a fluke — that is strong
evidence, Goodman points out. Besides, most well-accepted science is
based not on any single study, but on studies that have been
confirmed by repetition. Any one result may be likely to be wrong, but
confidence rises quickly if that result is independently replicated.

“Replication is vital,” says statistician Juliet Shaffer, a lecturer
emeritus at the University of California, Berkeley. And in medicine,
she says, the need for replication is widely recognized. “But in the
social sciences and behavioral sciences, replication is not common,”
she noted in San Diego in February at the annual meeting of the
American Association for the Advancement of Science. “This is a sad
situation.”

Bayes watch

Such sad statistical situations suggest that the marriage of science
and math may be desperately in need of counseling. Perhaps it could
be provided by the Rev. Thomas Bayes.

Most critics of standard statistics advocate the Bayesian approach to
statistical reasoning, a methodology that derives from a theorem
credited to Bayes, an 18th century English clergyman. His approach
uses similar math, but requires the added twist of a “prior probability”
— in essence, an informed guess about the expected probability of
something in advance of the study. Often this prior probability is more
than a mere guess — it could be based, for instance, on previous
studies.

Bayesian math seems baffling at first, even to many scientists, but it
basically just reflects the need to include previous knowledge when
drawing conclusions from new observations. To infer the odds that a
barking dog is hungry, for instance, it is not enough to know how
often the dog barks when well-fed. You also need to know how often it
eats — in order to calculate the prior probability of being hungry.
Bayesian math combines a prior probability with observed data to
produce an estimate of the likelihood of the hunger hypothesis. “A
scientific hypothesis cannot be properly assessed solely by reference
to the observational data,” but only by viewing the data in light of
prior belief in the hypothesis, wrote George Diamond and Sanjay Kaul
of UCLA’s School of Medicine in 2004 in the Journal of the American
College of Cardiology. “Bayes’ theorem is ... a logically consistent,
mathematically valid, and intuitive way to draw inferences about the
hypothesis.” (See Box 4)

With the increasing availability of computer power to perform its



complex calculations, the Bayesian approach has become more widely
applied in medicine and other fields in recent years. In many real-life
contexts, Bayesian methods do produce the best answers to
important questions. In medical diagnoses, for instance, the likelihood
that a test for a disease is correct depends on the prevalence of the
disease in the population, a factor that Bayesian math would take into
account.

But Bayesian methods introduce a confusion into the actual meaning
of the mathematical concept of “probability” in the real world.
Standard or “frequentist” statistics treat probabilities as objective
realities; Bayesians treat probabilities as “degrees of belief” based in
part on a personal assessment or subjective decision about what to
include in the calculation. That’s a tough placebo to swallow for
scientists wedded to the “objective” ideal of standard statistics.
“Subjective prior beliefs are anathema to the frequentist, who relies
instead on a series of ad hoc algorithms that maintain the facade of
scientific objectivity,” Diamond and Kaul wrote.

Conflict between frequentists and Bayesians has been ongoing for two
centuries. So science’s marriage to mathematics seems to entail some
irreconcilable differences. Whether the future holds a fruitful
reconciliation or an ugly separation may depend on forging a shared
understanding of probability.

“What does probability mean in real life?” the statistician David
Salsburg asked in his 2001 book The Lady Tasting Tea. “This problem
is still unsolved, and ... if it remains unsolved, the whole of the
statistical approach to science may come crashing down from the
weight of its own inconsistencies.”

_______________________________________________________________________

BOX 1: Statistics Can Confuse

Statistical significance is not always statistically significant.

It is common practice to test the effectiveness (or dangers) of a drug
by comparing it to a placebo or sham treatment that should have no
effect at all. Using statistical methods to compare the results,
researchers try to judge whether the real treatment’s effect was
greater than the fake treatments by an amount unlikely to occur by
chance.

By convention, a result expected to occur less than 5 percent of the
time is considered “statistically significant.” So if Drug X outperformed
a placebo by an amount that would be expected by chance only 4
percent of the time, most researchers would conclude that Drug X
really works (or at least, that there is evidence favoring the
conclusion that it works).

Now suppose Drug Y also outperformed the placebo, but by an



amount that would be expected by chance 6 percent of the time. In
that case, conventional analysis would say that such an effect lacked
statistical significance and that there was insufficient evidence to
conclude that Drug Y worked.

If both drugs were tested on the same disease, though, a conundrum
arises. For even though Drug X appeared to work at a statistically
significant level and Drug Y did not, the difference between the
performance of Drug A and Drug B might very well NOT be
statistically significant. Had they been tested against each other,
rather than separately against placebos, there may have been no
statistical evidence to suggest that one was better than the other
(even if their cure rates had been precisely the same as in the
separate tests).

“Comparisons of the sort, ‘X is statistically significant but Y is not,’ can
be misleading,” statisticians Andrew Gelman of Columbia University
and Hal Stern of the University of California, Irvine, noted in an article
discussing this issue in 2006 in the American Statistician. “Students
and practitioners [should] be made more aware that the difference
between ‘significant’ and ‘not significant’ is not itself statistically
significant.”

A similar real-life example arises in studies suggesting that children
and adolescents taking antidepressants face an increased risk of
suicidal thoughts or behavior. Most such studies show no statistically
significant increase in such risk, but some show a small (possibly due
to chance) excess of suicidal behavior in groups receiving the drug
rather than a placebo. One set of such studies, for instance, found
that with the antidepressant Paxil, trials recorded more than twice the
rate of suicidal incidents for participants given the drug compared
with those given the placebo. For another antidepressant, Prozac,
trials found fewer suicidal incidents with the drug than with the
placebo. So it appeared that Paxil might be more dangerous than
Prozac.

But actually, the rate of suicidal incidents was higher with Prozac than
with Paxil. The apparent safety advantage of Prozac was due not to
the behavior of kids on the drug, but to kids on placebo — in the Paxil
trials, fewer kids on placebo reported incidents than those on placebo
in the Prozac trials. So the original evidence for showing a possible
danger signal from Paxil but not from Prozac was based on data from
people in two placebo groups, none of whom received either drug.
Consequently it can be misleading to use statistical significance
results alone when comparing the benefits (or dangers) of two drugs.

_______________________________________________________________________

BOX 2: The Hunger Hypothesis

A common misinterpretation of the statistician’s P value is that it
measures how likely it is that a null (or “no effect”) hypothesis is



correct. Actually, the P value gives the probability of observing a
result if the null hypothesis is true, and there is no real effect of a
treatment or difference between groups being tested. A P value of
.05, for instance, means that there is only a 5 percent chance of
getting the observed results if the null hypothesis is correct.

It is incorrect, however, to transpose that finding into a 95 percent
probability that the null hypothesis is false. “The P value is calculated
under the assumption that the null hypothesis is true,” writes
biostatistician Steven Goodman. “It therefore cannot simultaneously
be a probability that the null hypothesis is false.”

Consider this simplified example. Suppose a certain dog is known to
bark constantly when hungry. But when well-fed, the dog barks less
than 5 percent of the time. So if you assume for the null hypothesis
that the dog is not hungry, the probability of observing the dog
barking (given that hypothesis) is less than 5 percent. If you then
actually do observe the dog barking, what is the likelihood that the
null hypothesis is incorrect and the dog is in fact hungry?

Answer: That probability cannot be computed with the information
given. The dog barks 100 percent of the time when hungry, and less
than 5 percent of the time when not hungry. To compute the
likelihood of hunger, you need to know how often the dog is fed,
information not provided by the mere observation of barking.

_______________________________________________________________________

BOX 3: Randomness and Clinical Trials

Assigning patients at random to treatment and control groups is an
essential feature of controlled clinical trials, but statistically that
approach cannot guarantee that individual differences among patients
will always be distributed equally. Experts in clinical trial analyses are
aware that such incomplete randomization will leave some important
differences unbalanced between experimental groups, at least some
of the time.

“This is an important concern,” says biostatistician Don Berry of M.D.
Anderson Cancer Center in Houston.

In an e-mail message, Berry points out that two patients who appear
to be alike may respond differently to identical treatments. So
statisticians attempt to incorporate patient variability into their
mathematical models.

“There may be a googol of patient characteristics and it’s guaranteed
that not all of them will be balanced by randomization,” Berry notes.
“But some characteristics will be biased in favor of treatment A and
others in favor of treatment B. They tend to even out. What is not
evened out is regarded by statisticians to be ‘random error,’ and this
we model explicitly.”



Understanding the individual differences affecting response to
treatment is a major goal of scientists pursuing “personalized
medicine,” in which therapies are tailored to each person’s particular
biology. But the limits of statistical methods in drawing conclusions
about subgroups of patients pose a challenge to achieving that goal.

“False-positive observations abound,” Berry acknowledges. “There are
patients whose tumors melt away when given some of our newer
treatments.… But just which one of the googol of characteristics of
this particular tumor enabled such a thing? It’s like looking for a
needle in a haystack ... or rather, looking for one special needle in a
stack of other needles.”

_______________________________________________________________________

BOX 4: Bayesian Reasoning

Bayesian methods of statistical analysis stem from a paper published
posthumously in 1763 by the English clergyman Thomas Bayes. In a
Bayesian analysis, probability calculations require a prior value for the
likelihood of an association, which is then modified after data are
collected. When the prior probability isn’t known, it must be
estimated, leading to criticisms that subjective guesses must often be
incorporated into what ought to be an objective scientific analysis. But
without such an estimate, statistics can produce grossly inaccurate
conclusions.

For a simplified example, consider the use of drug tests to detect
cheaters in sports. Suppose the test for steroid use among baseball
players is 95 percent accurate — that is, it correctly identifies actual
steroid users 95 percent of the time, and misidentifies non-users as
users 5 percent of the time.

Suppose an anonymous player tests positive. What is the probability
that he really is using steroids? Since the test really is accurate 95
percent of the time, the naïve answer would be that probability of
guilt is 95 percent. But a Bayesian knows that such a conclusion
cannot be drawn from the test alone. You would need to know some
additional facts not included in this evidence. In this case, you need to
know how many baseball players use steroids to begin with — that
would be what a Bayesian would call the prior probability.

Now suppose, based on previous testing, that experts have
established that about 5 percent of professional baseball players use
steroids. Now suppose you test 400 players. How many would test
positive?

• Out of the 400 players, 20 are users (5 percent) and 380 are not
users.

• Of the 20 users, 19 (95 percent) would be identified correctly as
users.



• Of the 380 nonusers, 19 (5 percent) would incorrectly be indicated
as users.

So if you tested 400 players, 38 would test positive. Of those, 19
would be guilty users and 19 would be innocent nonusers. So if any
single player’s test is positive, the chances that he really is a user are
50 percent, since an equal number of users and nonusers test
positive.
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